Quantifying Uncertainty for Non-Gaussian Ensembles in Complex Systems
نویسندگان
چکیده
Many situations in complex systems require quantitative estimates of the lack of information in one probability distribution relative to another. In short term climate and weather prediction, examples of these issues might involve the lack of information in the historical climate record compared with an ensemble prediction, or the lack of information in a particular Gaussian ensemble prediction strategy involving the first and second moments compared with the non-Gaussian ensemble itself. The relative entropy is a natural way to quantify this information. Here a recently developed mathematical theory for quantifying this lack of information is converted into a practical algorithmic tool. The theory involves explicit estimators obtained through convex optimization, principal predictability components, a signal/dispersion decomposition, etc. An explicit computationally feasible family of estimators is developed here for estimating the relative entropy over a large dimensional family of variables through a simple hierarchical strategy. Many facets of this computational strategy for estimating uncertainty are applied here for ensemble predictions for two “toy” climate models developed recently: the Galerkin truncation of the Burgers-Hopf equation and the Lorenz ’96 model.
منابع مشابه
Soliton-like Solutions of the Complex Non-linear Klein-Gordon Systems in 1 + 1 Dimensions
In this paper, we present soliton-like solutions of the non-linear complex Klein-Gordon systems in 1+1 dimensions. We will use polar representation to introduce three different soliton-like solutions including, complex kinks (anti-kinks), radiative profiles, and localized wave-packets. Complex kinks (anti-kinks) are topological objects with zero electrical charges. Radiative profiles are object...
متن کاملComparative Study of Random Matrices Capability in Uncertainty Detection of Pier’s Dynamics
Because of random nature of many dependent variables in coastal engineering, treatment of effective parameters is generally associated with uncertainty. Numerical models are often used for dynamic analysis of complex structures, including mechanical systems. Furthermore, deterministic models are not sufficient for exact anticipation of structure’s dynamic response, but probabilistic models...
متن کاملSpeech Enhancement using Laplacian Mixture Model under Signal Presence Uncertainty
In this paper an estimator for speech enhancement based on Laplacian Mixture Model has been proposed. The proposed method, estimates the complex DFT coefficients of clean speech from noisy speech using the MMSE estimator, when the clean speech DFT coefficients are supposed mixture of Laplacians and the DFT coefficients of noise are assumed zero-mean Gaussian distribution. Furthermore, the MMS...
متن کاملEfficient statistically accurate algorithms for the Fokker-Planck equation in large dimensions
Solving the Fokker-Planck equation for high-dimensional complex turbulent dynamical systems is an important and practical issue. However, most traditional methods suffer from the curse of dimensionality and have difficulties in capturing the fat tailed highly intermittent probability density functions (PDFs) of complex systems in turbulence, neuroscience and excitable media. In this article, ef...
متن کاملAdaptive RBF network control for robot manipulators
TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 26 شماره
صفحات -
تاریخ انتشار 2004